la tension électrique

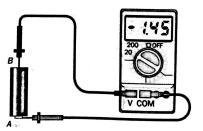
Exercice 1:

1. Pour une tension alternative sinusoïdale de $U_{\rm eff} = 10 \, V$, alors :

 $\diamond U_{\text{max}} = 7.07 \,\text{V}$ $\diamond U_{\text{max}} = 14.1 \,\text{V}$ $\diamond U_{\text{max}} = 1.41 \,\text{V}$

2. Pour une tension alternative sinusoïdale de période $T = 10 \,\mathrm{ms}$, alors :

 $\diamond f = 0.01 \,\mathrm{Hz}$

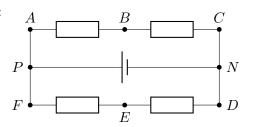

 $\diamond f = 10 \,\mathrm{Hz}$

 \diamond f = 100 Hz

Exercice 2:

Anass mesure la tension aux bornes d'une pile par un voltmètre numérique. Le calibre utilisé est C = 10 V.

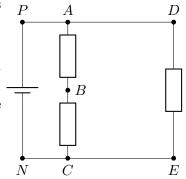
- 1. Anass a-t-il mesuré la tension U_{AB} ou U_{BA}? Justifier.
- 2. Déterminer le pôle positif de la pile.
- 3. Représenter la tension mesurée.
- 4. Déterminer l'incertitude absolue sachant que la classe du voltmètre vaut 1,5, puis encadrer le résultat.


Exercice 3:

On considère le circuit électrique suivant :

- 1. Calculer la tension U_{BC}.
- 2. Trouver la tension U_{EC} .
- 3. Calculer $V_A V_D$ et $V_C V_F$.

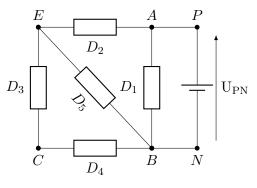
On donne : $U_{PN} = 12 V$


 $U_{ED} = 7.63 \, V \quad U_{BA} = -4.32 \, V$

Exercice 4:

On considère le circuit électrique suivant :

- 1. Pour mesurer la tension U_{DE}, on utilise un voltmètre dont le nombre maximale de graduations est N = 150 pour le calibre $C = 15 \,\mathrm{V}$. L'aiguille du voltmètre indique 120 graduations.
 - (a) Comment doit-on brancher le voltmètre dans le circuit?
 - (b) Trouver la valeur de U_{DE}.
- 2. On utilise maintenant un oscilloscope pour mesurer la tension U_{BC} pour une sensibilité 2 V/cm, le spot se déplace, sur l'écran, vers le haut d'une distance de 2 cm.
 - (a) Comment doit-on brancher l'oscilloscope?
 - (b) Trouver la valeur de U_{BC}
- 3. Déduire la valeur de la tension U_{AB}, et représenter les 3 tensions sur le schéma du circuit.
- 4. On relie E à la masse, trouver les potentiels électriques : V_A, V_B, V_C, V_D et V_E



Exercice 5:

On réalise le circuit ci-contre :

On mesure: $U_{PN} = 11.8 \, V$, $U_{EC} = 2.8 \, V$ et $U_{BC} = -3.2 \, V$

- 1. Calculer les tensions U_{AB}, U_{BE} et U_{AE}.
- 2. Déterminer le sens de courant électrique traversant chaque conducteur. Les représenter.
- 3. On relie les points E et B respectivement à l'entrée Y et la masse M d'un oscilloscope. Déterminer le sens de déplacement de la ligne lumineuse (signal) qui, au début, était au centre de l'écran, sachant que la sensibilité utilisée est : $S_V = 2 \text{ V.cm}^{-1}$.

