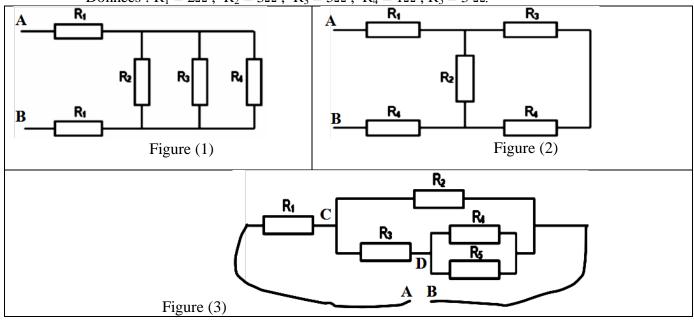

Exercice n°1:

- 1) Calculez la résistance équivalente $R_{\acute{e}q}$ à R_1 et R_2 .
- 2) Exprimer l'intensité I du courant en fonction de $R_{\acute{e}q}$ et U, puis de R_1 et R_2 .
- 3) Calculer I.
- 4) Exprimer les tensions aux bornes de chaque résistance en fonction de U, R_1 et R_2 et calculer U_1 et U_2 .

U=12 V;
$$R_1 = 20 Ω$$
 et $R_2 = 30 Ω$



Exercice n°2:

On considère les circuits représentés sur les figures (1), (2) et (3) ci-après :

- 1) Calculer la résistance équivalente de chacun des trois circuits .
- 2) En déduire la conductance équivalente de chacun des trois circuits.
- 3) Sachant que la tension aux bornes de la résistance équivalente A et B (figure 1 et 3) $U_{AB} = 12V$
 - 3-1) Etude du circuit (figure(1)) :
 - a- Représenter le circuit équivalent du circuit en intégrant le générateur entre A et B.
 - b- Représenter le sens conventionnel des courants correspondants dans les différentes branches .
 - c- Calculer l'intensité du courant principale I délivré par le générateur.
 - d- Calculer l'intensité du courant qui traversent les résistors R₂, R₃ et R₄.
 - 3-2) Etude du circuit (figure(2)):
 - a- Même question (voir a- Q 3-1))
 - b- Même question (voir b- Q 3-1))
 - c- Calculer la tension U_{AC} et en déduire la tension U_{CB} .
 - d- Calculer les valeurs des intensités des courants I2 et I3 qui traversent les résistors R2 et R3
 - e- Calculer les valeurs des tensions U_{CD} et U_{DB} .
 - f- En deduire les valeurs des intensités des courants I_4 et I_5 .

Données : $R_1=2\Omega$; $R_2=3\Omega$; $R_3=5\Omega$; $R_4=1\Omega$; $R_5=3\Omega$.

Exercice 3:

Entre deux points A et B d'un circuit électrique un élève monte deux conducteurs ohmiques $R_1 = 10\Omega$ et $R_2 = 20 \Omega$ en série. L'intensité I du courant qui parcourt R_1 et R_2 est I = 5A.

- 1) Calculer les tensions U_1 et U_2 aux bornes de R_1 et R_2
 - 2) Déterminer la tension U_{AB} entre les points A et B