
EXERCICE 1:

On accroche aux deux poulies deux masses de 50g.

- 1- Pourquoi dit-on négliger le poids de solide ?
- **2-** Représenter le poids des deux masses en prenant comme échelle 1cm pour 0,25N puis les forces exercées en A et B en conservant la même échelle. On notera $\vec{F}_{1/S}$ la force exercée en A et $\vec{F}_{2/S}$ la force exercée en B.

3- Compléter le tableau caractéristique des forces $\vec{F}_{1/S}$ et $\vec{F}_{2/S}$.

Forces	P.A.	Direction	Sens	Intensité (N)
$\vec{F}_{1/S}$				
$\vec{F}_{2/S}$				

4- Dégager tous les points communs de ces deux forces.

EXERCICE 2:

On dispose d'un ressort à spires non jointives, parfaitement élastique, de longueur au repos lorsqu'il n'est pas déformé L0 = 10 cm et de raideur $k = 80 \text{ N.m}^{-1}$.

- 1- On accroche une extrémité du ressort à une potence, puis on tire sur l'autre extrémité avec une force de valeur F = 4.0 N. Quelle est la longueur L prise par le ressort ?
- 2- Quelle est la valeur F' de la force exercée quand le ressort a une longueur L' = 12 cm?
- **3-** Quelle est la raideur d'un ressort qui prend la longueur L' = 12 cm quand on exerce sur son extrémité libre la force de valeur F= 4,0 N ? (Ce ressort a la même longueur au repos que le précédent.)

EXERCICE 3:

Soit un corps S, de masse m inconnue, maintenu en équilibre sur un plan incliné sans frottement par un ressort. Le plan incliné fait un angle $a=20^{\circ}$ avec l'horizontal et la raideur du ressort k est k=15 N.m⁻¹

- 1. Faire un schéma de la situation.
- 2. Définir le système et faire le bilan des forces qui s'y exercent.
- 3. Calculer la valeur de la force exercée par le ressort sur le corps S (tension de ressort T) sachant que son allongement est de $\Delta l=5$ cm.

EXERCICE 4:

Un cube homogène, d'arête a égale à 10 cm, est fabriqué dans un matériau de masse volumique ρ_c , immergé dans l'eau et suspendu à un ressort vertical en B, le centre d'une face ; il est en équilibre.

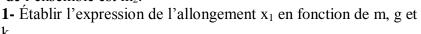
1°/ Déterminer les valeurs du poids P du cube et de la poussée d'Archimède F exercée par l'eau sur le solide.

2°/ Le solide étant en équilibre, les forces extérieures appliquées à ce cube sont colinéaires et leur direction passe par G centre d'inertie du cube. Déterminer la valeur de la force de rappel T du ressort.

- 3°/ Représenter les trois forces s'exerçant sur le solide à une échelle convenable.
- 4°/ Déterminer l'allongement du ressort.

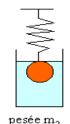
Données : $g = 10 \text{ N.kg}^{-1}$; $\rho_c = 9.0 \cdot 10^3 \text{ kg.m}^{-3}$

EXERCICE 5:


Un solide S de masse m est accroché à un ressort de constante de raideur k. A l'équilibre le ressort s'allonge d'une longueur x₁.

Un becher contenant de l'eau à une masse m₁.

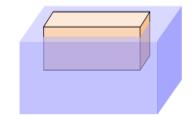
Le solide S est plongé dans l'eau du becher.


Un nouvel équilibre est observé.

L'allongement du ressort devient égal à x_2 et la masse de l'ensemble est m₂.

pesée: m₁

- **2-** Etablir l'expression de l'allongement x_2 en fonction de m, m_e , g et k. Comparer à x_1 .
- **3-** Exprimer la différence de pesée $m_2 m_1$ (on considère le système {eau, becher}).


EXERCICE 6:

Un pavé flotte à la surface de l'eau. Ses dimensions sont : hauteur : 20 cm ; longueur : 60 cm ; largeur 20 cm. 1) Le pavé émerge sur une hauteur de 3 cm. Calculer le volume de la partie immergée.

- 2) Calculer la masse d'eau déplacée. (peau = 1 000 kg/m³).
- 3) Calculer le poids d'eau déplacé et en déduire la valeur du poids du pavé.

$$(g = 10 \text{ N/kg}).$$

- 4) Calculer la masse du pavé.
- 5) a) Calculer le volume du pavé.
 - b) Préciser le matériau constituant ce pavé :

Matériau	Polystyrène	Bois	glace	Aluminium	Fer
Masse volumique	11	850	920	2 700	8 000
(kg/m3)					