

CHIMIE / Unité :2 *LA TRANSF*. *CHIMIQUE EST-ELLE TOUJOURS TOTALE*

Exercice

Transformations chimiques s'effectuant dans les deux sens

1. Solution de départ

Une solution commerciale, notée S_0 , d'un acide AH porte les indication suivante $C_0 = 17,5$ mol. L^{-1} : Pour la suite, et tant qu'il n'aura pas été identifié, l'acide contenu dans la bouteille sera noté AH et sa base conjuguée A^- .

- 1.1. Donner la définition d'une espèce acide au sens de Brönsted.
- 1.2. Quelles précautions doit-on prendre pour manipuler ce produit ?

2. Accès à la valeur du taux d'avancement final par une mesure pH-métrique

Dans une fiole jaugée de volume V = 500,0 mL, partiellement remplie d'eau distillée, le professeur verse avec précautions 1,00 mL de la solution S_0 d'acide AH, puis il complète jusqu'au trait de jauge. La solution obtenue est notée S_1 .

- 2.1- Déterminer la valeur de C_1 , concentration molaire en soluté apporté de la solution S_1 .
- 2.2- Ecrire l'équation de la réaction acido-basique entre l'acide AH et l'eau.
- 2.3- On note x l'avancement de la réaction. Construire le tableau d'avancement en fonction de C_1 , V, x, x_f .
- 2.4. Déterminer la valeur de l'avancement maximal de la réaction noté x_{max} en considérant la transformation comme totale.
- 3-Après avoir étalonné un pH-mètre, la mesure de pH de la solution S_1 : donne pH = 3,1.
- 3-1- Quelle est la valeur de la concentration finale en ions oxonium $\begin{bmatrix} H_3O^+ \end{bmatrix}_{1f}$? En déduire la valeur de

l'avancement final de la réaction noté x_{If} .

- 3-2- La transformation associée à la réaction de l'acide AH sur l'eau est-elle totale ou limitée ? Justifier.
- 3-3- Donner la définition du taux d'avancement final d'une transformation chimique.
- 3-4- Calculer la valeur du taux d'avancement final τ_1 , de la transformation associée à la réaction de l'acide AH sur l'eau.
- **3-5-** On dispose ci-dessous quelques valeurs du taux d'avancement final de la réaction d'un acide sur l'eau pour des solutions de même concentration C_1 . Identifier l'acide contenu dans la solution S_0 .

	Acide contenu dans la solution	Valeur du taux d'avancement final
	Acide méthanoïque HCOOH	0,072
	Acide éthanoïque CH₃COOH	0,023
ì	Acide propanoïque CH ₃ CH ₂ COOH	0,018

4- Accès à la valeur du taux d'avancement final par une mesure conductimétrique

Dans la seconde partie on considère une solution aqueuse S_2 de l'acide précédent à la concentration $C_2=5,0.10^{-3} \text{mol.L}^{-1}$.

La mesure de conductivité sur un volume V_2 de cette solution donne la valeur $\sigma_2=1,07.10^{-2} \mathrm{S.m}^{-1}$.

La réaction support de cette étude est toujours la réaction de l'acide AH sur l'eau écrite à la question 2.2.

On rappelle que la conductivité σ d'une solution s'exprime selon la loi : $\sigma = \sum_i \lambda_i [X_i]$ où $[X_i]$ représente la

concentration molaire d'une espèce ionique exprimée en mol.m $^{-3}$ et λ_i la conductivité molaire ionique de cette espèce exprimée en $S.m^2.mol^{-1}$.

Donnée :conductivités molaires ioniques: $\lambda_{A^-} = 4.1 \times 10^{-3} \text{ S.m}^2 \cdot \text{mol}^{-1}$ $\lambda_{\text{H}_3\text{O}^+} = 35 \times 10^{-3} \text{ S.m}^2 \cdot \text{mol}^{-1}$

- 4-1- Donner l'expression de σ_2 en fonction de la concentration finale en ions oxonium $\left[H_3O^+\right]_{2,f}$ dans la solution S_2 et des conductivités molaires ioniques λ_{A^-} et $\lambda_{H_2O^+}$.
- 4-2- Calculer la valeur de la concentration finale exprimée en $mol.L^{-1}$ en ions oxonium $\begin{bmatrix} H_3O^+ \end{bmatrix}_{2,f}$ dans la solution S_2 . On admet que le taux d'avancement final τ_2 de la transformation étudiée est donné par l'expression suivante : $\tau_2 = \frac{\begin{bmatrix} H_3O^+ \end{bmatrix}_{2,f}}{c_2}$.
- 4-3- Calculer la valeur du taux d'avancement final τ_2 pour la transformation chimique entre l'acide AH et l'eau à la concentration c_2 .
- 4-4- La valeur de τ_2 est-elle égale ou différente de celle de τ_1 , calculée à la question 3-4- ? Ce résultat était-il prévisible ? Expliquer.