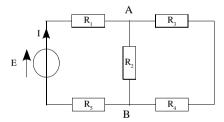

série : tensions électriques - courant électrique - résistance équivalente

LOI DES NOEUDS, LOI DES MAILLES:

Exercice n°1:

Soit le montage suivant :



- 1- Établir l'équation du noeud C.
- 2- En déduire l'expression de I₃ en fonction de I₁ et I₂.
- 3- Calculer I₃.
- 4- Établir l'équation de la maille (ABCFA).
- 5- En déduire l'expression de la tension U₂.
- 6- Calculer U₂.
- 7- Établir l'équation de la maille (CDEFC).
- 8- En déduire l'expression de U₃.
- 9- Calculer U₃.
- 10- Vérification de la loi des mailles

Établir l'expression de la maille (ABDEA) et montrer que $E = U_1 + U_3$.

11- Faire l'application numérique. La loi des mailles est-elle vérifiée?

Exercice n°2:

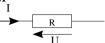
On donne:

 $E = 12 \text{ V}, U_{AB} = 4 \text{ V}$

I = 10 mA

 $R_1 = 470 \Omega$, $R_2 = 1 k\Omega$.

1- Flécher et annoter les différentes tensions et intensités sur le schéma (convention récepteur).


Exemple : Aux bornes de R1, la tension sera notée U1 et l'intensité qui la traverse sera notée I1.

- 2- Quelle est la valeur du courant qui traverse R₅?
- 3- Le courant qui traverse R_4 a pour valeur I_4 = 6mA. Calculer la valeur de l'intensité I_2 qui traverse R_2 .
 - 4- La tension $U_1 = 4,7$ V. Calculer la tension U_5 aux bornes de la résistance R_5 .
 - 5- En déduire la valeur de I₃.
 - 6- Établir l'expression de U₂ en fonction de U₃ et U₄.
 - 7- Calculer U_3 si $U_4 = 1.2$ V.

http://phy-chmouzouri.e-monsite.com Page 1/6

série : tensions électriques - courant électrique- résistance équivalente

LOI D'OHM

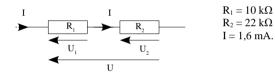
Exercice n°1:

Une résistance $R=6.3~\mathrm{k}\Omega$ est traversée par une intensité $I=3.81~\mathrm{mA}$.

Calculer la tension U à ses bornes.

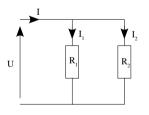
Exercice n°2:

On mesure la tension U = 25 V aux bornes d'une résistance R inconnue ainsi que l'intensité I = 5.3 mA qui la traverse.


Calculer la valeur de la résistance R.

Exercice n°3:

Calculer l'intensité I qui traverse une résistance $R=10~k\Omega$ si la tension U=10~V .


Exercice n°4:

Deux résistance R₁ et R₂ sont branchées en série.

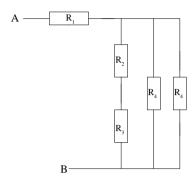
- 1- Calculer la valeur de la tension U_1 .
- 2- Calculer la valeur de la tension U2
- 3- Calculer la valeur de la tension U.
- 4- On pose $R_{EQ} = \frac{U}{I}$. Calculer R_{EQ} .

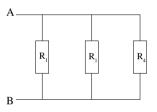
Exercice n°5:

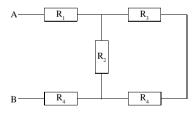
 $R_1 = 10 \text{ k}\Omega$ $R_2 = 22 \text{ k}\Omega$ U = 10 V.

- 1- Quelle est la valeur de la tension aux bornes de la résistance R₁ ?
- 2- Calculer la valeur du courant I1.
- 3- Quelle est la valeur de la tension aux bornes de R₂ ?
- 4- Calculer la valeur du courant I₂.
- 5- Calculer la valeur de l'intensité I.
- 6- On pose $R_{EQ} = \frac{U}{I}$. Calculer R_{EQ} .

http://phy-chmouzouri.e-monsite.com


série : tensions électriques - courant électrique- résistance équivalente


RÉSISTANCES ÉQUIVALENTES:


Exercice n°1:

$$R_1 = 100 \Omega$$
, $R_2 = 150 \Omega$, $R_3 = 100 \Omega$, $R_4 = 500 \Omega$

Calculer la résistance équivalente vue des points A et B pour les différents montages :

Exercice n°2:

On dispose de 6 résistances identiques de 200 Ω .

Comment faut-il les brancher pour obtenir une résistance équivalente de (faire un schéma):

 $R_{EO} = 1.2 \text{ k}\Omega.$

 $R_{EQ} = 0.3 \text{ k}\Omega.$

 $R_{EQ} = 150 \Omega$.

http://phy-chmouzouri.e-monsite.com Page 3/6

série : tensions électriques - courant électrique- résistance équivalente

PUISSANCE:

Exercice n°1:

On mesure la tension U aux bornes d'un dipôle ainsi que l'intensité I qui la traverse.

Les mesures donnent U = 120 V et I = 2,3 A.

Calculer la puissance électrique P absorbée par le dipôle.

Exercice n°2:

Une résistance en carbone R=2,2 k Ω peut dissiper au maximum une puissance $P_{MAX}=1/4$ W. Calculer l'intensité I_{MAX} admissible par la résistance.

Exercice n°3:

Un radiateur (équivalent à une résistance R) dissipe une puissance P = 1 kW.

Le radiateur est alimenté par une tension U = 220 V.

Calculer la valeur de la résistance R du radiateur.

Exercice n°4:

On branche en série deux résistances $R_1 = 10 \text{ k}\Omega$; ¹/₄ W et $R_2 = 33 \text{ k}\Omega$; ¹/₂ W.

Calculer le courant maximum I_{MAX} qui peut circuler dans le montage.

En déduire la tension U aux bornes de l'ensemble.

Calculer ensuite la puissance P dissipée par l'ensemble.

Exercice n°5:

On branche en parallèle deux résistances $R_1 = 10 \text{ k}\Omega$; ${}^{1}\!\!/\!\!4$ W et $R_2 = 33 \text{ k}\Omega$; ${}^{1}\!\!/\!\!2$ W. Calculer la tension maximale U qu'on peut appliquer aux bornes de l'ensemble.

Calculer la puissance P dissipée par l'ensemble.

CARACTÉRISTIQUES:

- $\label{eq:loss} \mbox{$1$- Dessiner le schéma du montage permettant de relever la caractéristique $U(I)$ d'une résistance R.}$
 - 2- Les mesures donnent :

U(V)	0	3,24	4,09	5,35	5,97	7,19	9,46	9,57
I(mA)	0	0,5	0,7	1	1,1	1,4	1,8	1,9

Tracer la caractéristique U(I) de la résistance R.

3- Déterminer la valeur de la résistance R.

série : tensions électriques - courant électrique- résistance équivalente

Réponses :

LOI DES NOEUDS, LOI DES MAILLES:

Exercice n°1:

- $\mathbf{I}_1 = \mathbf{I}_2 + \mathbf{I}_3.$
- $I_3 = I_1 I_2$.
- $I_3 = 70 \text{ mA}$
- $E U_1 U_2 = 0$
- $U_2 = E U_1$
- $U_2 = 4 \text{ V}$
- $-U_3+U_2=0$
- $U_3 = U_2$
- $U_3 = 4 \text{ V}$
- 10- $E U_1 U_3 = 0$ soit $E = U_1 + U_3$
- 11- 6 + 4 = 10 V (CQFD)

Exercice n°2:

- 2- $I_5 = I = 10 \text{ mA}$
- $I_2 = 4 \text{ mA}$
- 4- $U_5 = 3.3 \text{ V}$
- 5- $I_3 = 6 \text{ mA}$
- 6- $U_2 = U_3 + U_4$
- 7- $U_3 = 2.8 \text{ V}$

LOI D'OHM:

Exercice n°1:

U = 24 V

Exercice n°2:

 $R = 4717 \Omega$

Exercice n°3:

 $I = 1.10^{-3} A = 1 mA$.

Exercice n°4:

- 1- $U_1 = 16 \text{ V}$
- 2- $U_2 = 35,2 \text{ V}$
- 3-U = 51.2 V
- 4- $R_{eq} = 32 \text{ k}\Omega$

Exercice n°5:

- 1- $U_1 = U = 10 \text{ V}$
- 2- $I_1 = 1 \text{ mA}$
- 3- $U_2 = U = 10 \text{ V}$
- 4- $I_2 = 454 \mu A$
- 5- I = 1,454 mA
- $R_{EO} = 6.875 \Omega$

$R_{AB} = 225 \Omega$

Exercice n°1:

$$R_{AB} = 45,45 \Omega$$

RÉSISTANCES ÉQUIVALENTES :

$$R_{AB} = 720 \Omega$$

Exercice n°2:

$$R_{EQ} = 1200 \ \Omega = 6 \ x \ 200 \ \Omega$$
: On branche les 6 résistances en série.

$$R_{EQ} = 300~\Omega ~= 100~\Omega + 100~\Omega + 100~\Omega. \label{eq:Req}$$

Une solution possible:

$$= (200 //200) + (200 //200) + (200 //200)$$

 $R_{\text{EO}} = 150~\Omega = 50~\Omega + 100~\Omega +$

Une solution possible:

$$= (200 //200 //200 //200) + (200 //200)$$

PUISSANCE:

Exercice n°1:

P = 276 W

Exercice n°2:

 $I_{MAX} = 674 \text{ mA}$

Exercice n°3:

$$R = 48,4 \Omega$$

Exercice n°4:

$$I_{\rm 1MAX} = 5 \ mA \quad I_{\rm 2MAX} = 3,89 \ mA \qquad \quad On \ choisit \ I_{\rm MAX} = 3,89 \ mA. \label{eq:Imax}$$

$$U = 167,4 \text{ V}$$

$$P = 651 \text{ mW}$$

Exercice n°5:

$$U_{IMAX} = 50 \text{ V}$$
 $U_{2MAX} = 128,5 \text{ V}$ On choisit $U_{MAX} = 50 \text{ V}$

$$P = 325,8 \text{ mW}$$

CARACTÉRISTIQUES

$$R = 5.4 \text{ k}\Omega$$