Direction provinciale Oujda Angad Lycée Lala Asmae	1ér Bac IOF Filière science expérimentale	Année scolaire : 2019/2020
Professeur : Mouzouri	DS N°= 1 1ére semestre	Durée : 2 heures Coefficient : 7

PHYSIQUE:

0,25

0,25

0,25

0,25

0,25

0,5

1,5

0,75

0,75

0,75

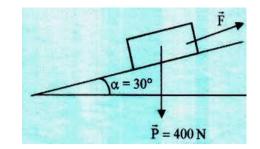
0,75

Exercice 1 : répondre en mettant une croix à la case convenable :

		vrai	faux
1-	Dans un référentiel galiléen ; chaque point d'un système pseudo- isolé est nécessairement immobile ou animé d'un mouvement rectiligne uniforme		
2-	Dans le cas d'un mouvement circulaire uniforme dans un référentiel galiléen ; la somme des vecteurs forces qui lui sont appliquées est un vecteur nul .		
3-	Le travail d'une force dont la direction est parallèle au vecteur déplacement de son point d'application est nul .		
4-	Le travail d'une force dont la direction est orthogonale au vecteur déplacement de son point d'application est nul .		
5-	Tous les points d'un solide en rotation ont à chaque instant la même vitesse linéaire instantanée .		

Exercice 2:

La roue d'une voiture de diamètre D= 59,1 cm tourne à une vitesse angulaire instantanée constante de 1170 tours de pneu par minute autour de l'axe fixe (Δ) passant par son centre.


- 1) Déterminer la nature de mouvement de la roue. Justifier votre réponse.
- 2) Calculer f la valeur de fréquence et T la période de mouvement de la roue?
- 3) Calculer la vitesse angulaire de la roue en rad/s.
- 4) On considère un point A situé au périphérique de la roue.
 - a) Calculer la vitesse linéaire du point A.
 - b) Donner l'équation horaire $\theta(t)$ de point A sachant que l'abscisse angulaire θ_0 de ce point à l'instant t=0 est θ_0 =0,25rad.
 - c) En déduire l'équation horaire s(t) du point A.
 - d) Déterminer le nombre de tours effectuées par la roue pendant la durée $\Delta t=16$ min.

Exercice 3: On donne: g = 9.81 N/Kg.

Un mobile (S), de poids P=400N, glisse sans frottement sur un plan incliné d'un angle α =30° par rapport au plan horizontal à une vitesse constante $V_G=10~m/s$. On exerce une force constante \vec{F} , dont la direction est parallèle au plan de contact et de puissance P=2kW (voir le schéma ci-contre).

Le centre d'inertie G se déplace de la position G_1 à la position G_2 telles que : G_1G_2 =80 cm .

- 1) Donner le bilan des forces exercées sur le mobile (S) au cour de son déplacement .
- 2) Exprimer le travail du poids de (S) au cours du déplacement $\overrightarrow{G_1G_2}$ en fonction du poids P et G_1G_2
- 3) Déterminer la valeur de l'intensité de la force \vec{F} .

1

0,75

Site: http://phy-chmouzouri.e-monsite.com/

Email: mzrhassan65@gmail.com

Direction provinciale Oujda Angad Lycée Lala Asmae	1ér Bac IOF Filière science expérimentale	Année scolaire : 2019/2020
Professeur : Mouzouri	DS N°= 1 1ére semestre	Durée : 2 heures Coefficient : 7

1

1

0,75

0,75

- 4) Calculer le travail de la force \overrightarrow{F} pour le déplacement $\overrightarrow{G_1G_2}$.
- 5) Calculer le travail de la force \vec{R} exercée par le plan incliné sur le mobile (S) pour le même déplacement par deux méthodes.
- 6) En réalité le déplacement du mobile(S) se fait avec frottement de la position G_1 à la position G_2 . On considère que les forces de frottement sont équivalentes à une force \vec{f} tangentielle au déplacement $\overrightarrow{G_1G_2}$ d'intensité f=1,2 N.
 - a) Calculer le travail de la force \vec{R} exercée par le plan incliné sur le mobile (S) pour le déplacement $\overrightarrow{G_1G_2}$. conclure .
 - b) Calculer le coefficient k de frottement et en déduire l'angle de frottement .

CHIMIE:

Exercice 1:

1) On donne: constante d'Avogadro N_A= 6,02.10²³mol⁻¹

 $M(C) = 12 \text{gmol}^{-1}$, $M(O) = 16 \text{ g.mol}^{-1}$, $M(H) = 1 \text{g.mol}^{-1}$.

- a) Calculer la masse molaire d'espèce glucose $C_6H_{12}O_6$.
- b) Déterminer le nombres de molécules du glucose correspondant à n= 0,5 mol.
- c) Quelle est la quantité de matière n de soluté dans un volume V = 0.50 L d'une solution aqueuse du glucose de concentration molaire $C = 5.0 \times 10^{-2}$ mol/L?.
- 2) On prépare un volume V = 200 mL d'une solution du glucose en dissolvant une quantité de matière $n = 2.0 \times 10^{-4}$ mol du glucose à l'état solide dans l'eau pure.
- a) Calculer la concentration massique $C_{\rm m}$ de cette solution.
- b) En déduire la masse m du soluté utilisée pour cette préparation.

Exercice 2:

 $L'ammoniac\ NH_3\ est\ un\ gaz\ très\ soluble\ dans\ l'eau\ ,\ On\ le\ considère\ comme\ un\ gaz\ parfait\ ,$ On donne : $M(NH_3)=17gmol^{-1}\$, constante des gaz parfaits : $R=8,314\ (SI)$

- 1) Donner l'unité de la constante R dans (SI).
- 2) Calculer le volume molaire gazeux dans les conditions standards de température et de pression. telles que : $t_S = 20$ °C et $p_0 = 101$ 325 Pa.
- 3) On prépare un volume V_0 = 5,0 L de solution d'ammoniac par dissolution dans l'eau d'un volume $V(NH_3)$ =1,2L d'ammoniac gazeux.
 - a) Quelle est la concentration molaire C_1 de la solution obtenue ?
 - b) Quelle est la masse du gaz ammoniac dissous par litre de la solution précédente ?
 - c) Quel est le volume du gaz ammoniac nécessaire pour fabriquer un volume $V_S = 500 \text{ mL}$ de solution de concentration molaire égale à $C_2 = 0.20 \text{ mol.L}^{-1}$?

Email: mzrhassan65@gmail.com

Données: masse molaire $M(NH_3) = 17 \text{gmol}^{-1}$.

BONNE CHANCE

0, 5 0, 5 0,75

0,75 0,75

0,5

0,75

0,75 0,75

1